球坐标系速度和加速度的推导
做法之一
球坐标基矢按直角坐标展开:
$$
\begin{cases}
\hat{r} &= \sin\theta\cos\varphi \hat{x} +\sin\theta\sin\varphi \hat{y} +\cos\theta \hat{z}\\\\
\hat{\theta} &= \cos\theta\cos\varphi \hat{x} +\cos\theta\sin\varphi \hat{y} -\sin\theta \hat{z}\\\\
\hat{\varphi} &= -\sin\varphi \hat{x} +\cos \varphi \hat{y}
\end{cases}
$$
球坐标系的基矢不像直角坐标的基矢一样是固定的,而是随坐标的改变而改变:
$$
\begin{cases}
\hat{r} &= \hat{r}(\theta,\varphi) \\\\
\hat{\theta} &= \hat{r}(\theta,\varphi) \\\\
\hat{\varphi} &= \hat{r}(\varphi)
\end{cases}
$$
所球坐标系中的坐标的表达式为:
$$
\vec{r} = r \hat{r}
$$
速度的表达式为:
$$
\dot{\vec{r}} = \dot{r}\hat{r} + r \dot{\hat{r}}
$$
而:
$$
\begin{split}
\dot{\hat{r}} =& \dot{\theta}(\cos\theta\cos\varphi \hat{x} +\cos\theta\sin\varphi \hat{y} -\sin\theta \hat{z}) \\\\
&+\dot{\varphi}(-\sin\theta\sin\varphi \hat{x} +\sin\theta\cos \varphi \hat{y}) \\\\
=& \dot{\theta}\hat{\theta} + \dot{\varphi}\sin\theta \hat{\varphi}
\end{split}
$$
所以:
$$
\dot{\vec{r}} = \dot{r}\hat{r} + r \dot{\hat{r}} = \dot{r}\hat{r} +r\dot{\theta}\hat{\theta} + r\dot{\varphi}\sin\theta \hat{\varphi}
$$
加速度的表达式为:
$$
\ddot{\vec{r}} = \ddot{r}\hat{r}+\dot{r}\dot{\hat{r}}+\dot{r}\dot{\hat{r}}+ r \ddot{\hat{r}} = \ddot{r}\hat{r}+2\dot{r}\dot{\hat{r}}++ r \ddot{\hat{r}}
$$
而:
$$
\ddot{\hat{r}} = \ddot{\theta}\hat{\theta}+\dot{\theta}\dot{\hat{\theta}} + \ddot{\varphi}\sin\theta\hat{\varphi} +\dot{\theta}\dot{\varphi}\cos\theta\hat{\varphi} + \dot{\varphi}\sin\theta \dot{\hat{\varphi}}
$$
其中 $\dot{\hat{\theta}}$ 和 $\dot{\hat{\varphi}}$ 为:
$$
\begin{split}
\dot{\hat{\theta}} =& \dot{\theta}(-\sin\theta\cos\varphi \hat{x} -\sin\theta\sin\varphi \hat{y} -\cos\theta \hat{z}) \\\\
&+\dot{\varphi}(-\cos\theta\sin\varphi \hat{x} +\cos\theta\cos \varphi \hat{y}) \\\\
=& -\dot{\theta}\hat{r} + \dot{\varphi}\cos\theta\hat{\varphi}
\end{split}
$$
则:
$$
\begin{split}
\ddot{\hat{r}} =& -\dot{\theta}^2\hat{r}+\dot{\theta}\dot{\varphi}\cos\theta\hat{\varphi}+ \ddot{\theta}\hat{\theta}+ \ddot{\varphi}\sin\theta\hat{\varphi} +\dot{\theta}\dot{\varphi}\cos\theta\hat{\varphi} -\dot{\varphi}^2\sin^2\theta\hat{r}-\dot{\varphi}^2\sin\theta\cos\theta\hat{\theta} \\\\
=& (-\dot{\theta}^2-\dot{\varphi}^2\sin^2\theta)\hat{r} +(\ddot{\theta}-\dot{\varphi}^2\sin\theta\cos\theta)\hat\theta +(2\dot{\theta}\dot{\varphi}\cos\theta+\ddot{\varphi}\sin\theta)\hat{\varphi}
\end{split}
$$
最终得加速度的表达式为:
$$
\begin{split}
\ddot{\vec{r}} = & \ddot{r}\hat{r}+2\dot{r}\dot{\theta}\hat{\theta}+2\dot{r}\dot{\varphi}\sin\theta\hat{\varphi}+ r \ddot{\hat{r}} \\\\
=&(\ddot{r}-r\dot{\theta}^2-r\dot{\varphi}^2\sin^2\theta)\hat{r} \\\\
&+(2\dot{r}\dot{\theta}+r\ddot{\theta}-r\dot{\varphi}^2\sin\theta\cos\theta)\hat{\theta} \\\\
&+(2\dot{r}\dot{\varphi}\sin\theta+2r\dot{\theta}\dot{\varphi}\cos\theta+r\ddot{\varphi}\sin\theta)\hat{\varphi}
\end{split}
$$
做法之二
坐标基矢之间的变换:
$$
\left(\begin{matrix}
\hat{e}r\
\hat{e}{\theta}\
\hat{e}_{\phi}\
\end{matrix}\right)
\left(\begin{matrix}
\sin\theta\cos\phi &\sin\theta\sin\phi &\cos\theta \
\cos\theta\cos\phi &\cos\theta\sin\phi &-\sin\theta \
-\sin\phi &\cos\phi & 0
\end{matrix}\right)
\left(\begin{matrix}
\hat{e}_x\
\hat{e}_y\
\hat{e}_z\
\end{matrix}\right)
$$
坐标基矢之间的逆变换:
$$
\left(\begin{matrix}
\hat{e}_x\
\hat{e}_y\
\hat{e}_z\
\end{matrix}\right)
\left(\begin{matrix}
\sin\theta\cos\phi &\cos\theta\cos\phi &-\sin\phi \
\sin\theta\sin\phi &\cos\theta\sin\phi &\cos\phi \
\cos\theta &-\sin\theta & 0
\end{matrix}\right)
\left(\begin{matrix}
\hat{e}r\
\hat{e}{\theta}\
\hat{e}_{\phi}\
\end{matrix}\right)
$$
坐标之间的变换:
$$
\begin{cases}
r = \sqrt{x^2+y^2+z^2}\
\theta = \arccos\frac{z}{ \sqrt{x^2+y^2+z^2}} \
\phi = \arctan\frac{y}{x}
\end{cases}
$$
坐标之间的逆变换:
$$
\begin{cases}
x &= r\sin\theta\cos\phi \
y &=r\sin\theta\sin\phi\
z &= r\cos\theta
\end{cases}
$$
质点位置的表达式:
$$
\vec{r} = x \hat{e}_x +y\hat{e}_y + z\hat{e}_z
$$
将坐标的变换和基矢的变换代入可得:
$$
\vec{r} = r \hat{e}_r
$$
速度的表达式为:
$$
\vec{v} = \dot{x} \hat{e}_x + \dot{y} \hat{e}_y + \dot{z} \hat{e}z
$$
其中
$$
\begin{cases}
\dot{x} &= \dot{r}\sin\theta\cos\phi +r\dot{\theta}\cos\theta\cos\phi-r\dot{\phi}\sin\theta\sin\phi \
\dot{y} &=\dot{r}\sin\theta\sin\phi+r\dot{\theta}\cos\theta\sin\phi+r\dot{\phi}\sin\theta\cos\phi \
\dot{z} &= \dot{r}\cos\theta-r\dot{\theta}\sin\theta
\end{cases}
$$
代入变换关系可得:
$$
\vec{v} = \dot{r}\hat{e}r + r\dot{\theta}\hat{e}{\theta} + r\dot{\phi}\sin\theta \hat{e}{\phi}
$$
加速度表达式为:
$$
\vec{a} = \ddot{x} \hat{e}x + \ddot{y} \hat{e}y + \ddot{z} \hat{e}z
$$
代入变换关系可得
$$
\vec{a}=(\ddot{r}-r\dot{\theta}^2-r\dot{\phi}^2\sin^2\theta)\hat{e}{r} \\
+(2\dot{r}\dot{\theta}+r\ddot{\theta}-r\dot{\phi}^2\sin\theta\cos\theta)\hat{e}{\theta} \\
+(2\dot{r}\dot{\phi}\sin\theta+2r\dot{\theta}\dot{\phi}\cos\theta+r\ddot{\phi}\sin\theta)\hat{e}{\varphi}
$$