Information

  • 官方介绍: https://ocw.mit.edu/courses/physics/8-421-atomic-and-optical-physics-i-spring-2014/
  • 视频列表地址: https://www.youtube.com/playlist?list=PLUl4u3cNGP62FPGcyFJkzhqq9c5cHCK32

整个课程的介绍

AMO continu redefine itself

Resonance

The phenomenon of resonance is that you have something which can periodically vary, and when you drive it, you see peaked response.

Quality factor

$$\begin{align} Q = \frac{f_0}{\Delta f} \end{align}$$

原子物理中, $Q$ 一般非常大.

High quality Oscillator is the tool for discovery.

Whispering-gallery modes

Lorentzian shape

$$\begin{align} \propto \mathrm{Im} \frac{1}{\omega_0 - \omega - \mathrm{i}\frac{\gamma}{2}} \end{align}$$ $$\begin{align} \gamma = \Delta\omega , \quad Q = \frac{\omega_0}{\gamma} \end{align}$$

Unit

angular frequency $\omega$ units: rad/s or $\mathrm{s}^{-1}$

$$\begin{align} f = \frac{\omega_0}{2\pi} \end{align}$$
Exp: \begin{align} \omega_0 = 2\pi \cdot 1 \mathrm{MHz} = 6.28 \times 10^6 \mathrm{s}^{-1} \end{align}

$\gamma$ units: $\mathrm{s}^{-1}$, $e^{-\mathrm{i}\omega t - \gamma t}$

\begin{align} \gamma = 10^4 \mathrm{s}^{-1} \end{align} not \begin{align} \gamma = 10^4 \mathrm{Hz} \\ \gamma = 2\pi\times 1.66 \mathrm{Hz} \end{align}

Q

Fourier trans of Lorentzian shpe?

Reference