Information
- Vidoes: https://www.youtube.com/playlist?list=PLzcd6SoIscwjHuWRE38UXWG92uq0Sy4UF
- Book: Carl M. Bender, Steven A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I Asympotic Methods and Perturbation Theory, 1999
1
微扰求解 Hard Problem 的步骤
- 使某一项成为微扰 \(\epsilon\)
- 将无微扰的解加上修正后代回方程, 逐项对应求解
- 将所有的项加进来.
- Convert the original problem into a perturbation problem by introducing the small parameter \(\epsilon\) .
- Assume an expression for the answer in the form of a perturbation series and compute the coefficients of that series.
- Recover the answer to the original problem by summing the perturbation series for the appropriate value of \(\epsilon\) .
Symbols
\begin{align*} f(x) \sim g(x) \quad (x \to x_0) \end{align*}
- \(\sim\) : 'is asympotic to'
means
\begin{align*} \lim_{x\to x_0} \frac{f(x)}{g(x)} = 1 \end{align*}
\begin{align*} f(x) \ll g(x) \quad (x \to x_0) \end{align*}
- \(\ll\) : 'is negligible compared with'
means
\begin{align*} \lim_{x\to x_0} \frac{f(x)}{g(x)} = 0 \end{align*}
Method of Dominant Balance
求方程
\begin{align*} \epsilon x^5 +x = 1 \end{align*}的解在 \(\epsilon \to 0\) 时, 行为.
- Neglect 1
得到
\begin{align*} x \sim \frac{(-1)^{1/4}}{\epsilon^{1/4}} \end{align*}是复平面上四个在无穷远的解. \(1\) 相比无穷大, 可以忽略, 不矛盾.
- Neglect \(x\)
得到
\begin{align*} x \sim \frac{1^{1/5}}{\epsilon^{1/5}} \end{align*}这里无穷大的 \(x\) 相比于 \(1\) 是不可忽略的. 矛盾
- Neglect \(\epsilon x^5\)
那么
\begin{align*} \epsilon x^5 \sim \epsilon\cdot 1 \ll 1 \end{align*}可以忽略.