Hamiltonian
Nuclear Spin \(I\) , orbital angular momentum \(L\) , and \(spin\) is
\begin{align*} I =& \frac{3}{2} \\ L =& 0 \\ S =& \frac{1}{2} \\ \end{align*}Hamiltonian is
\begin{align*} H_S =& A \vec{I} \cdot \vec{J} + C J_z +D I_z \\ =& A \left[ I_z J_z + \frac{1}{2}(I_{ +}J_- +I_-J_{ +}) \right] + C J_z + D I_z \end{align*} \begin{align*} |1\rangle =& |\frac{3}{2},\frac{1}{2}\rangle \\ |2\rangle =& |\frac{1}{2},\frac{1}{2}\rangle \\ |3\rangle =& |-\frac{1}{2},\frac{1}{2}\rangle \\ |4\rangle =& |-\frac{3}{2},\frac{1}{2}\rangle \\ |5\rangle =& |\frac{3}{2},-\frac{1}{2}\rangle \\ |6\rangle =& |\frac{1}{2},-\frac{1}{2}\rangle \\ |7\rangle =& |-\frac{1}{2},-\frac{1}{2}\rangle \\ |8\rangle =& |-\frac{3}{2},-\frac{1}{2}\rangle \\ \end{align*}Hamiltonian in the Hilbert space spaned by above kets is
\(\mid 1 \rangle\) | \(\mid 2 \rangle\) | \(\mid 3 \rangle\) | \(\mid 4 \rangle\) | \(\mid 5 \rangle\) | \(\mid 6 \rangle\) | \(\mid 7 \rangle\) | \(\mid 8 \rangle\) | |
\(\langle 1 \mid\) | \(\frac{3}{4}A+\frac{1}{2}C+\frac{3}{2}D\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) |
\(\langle 2 \mid\) | \(0\) | \(\frac{1}{4}A+\frac{1}{2}C+\frac{1}{2}D\) | \(0\) | \(0\) | \(\frac{\sqrt{3}}{2}A\) | \(0\) | \(0\) | \(0\) |
\(\langle 3 \mid\) | \(0\) | \(0\) | \(-\frac{1}{4}A+\frac{1}{2}C-\frac{1}{2}D\) | \(0\) | \(0\) | \(A\) | \(0\) | \(0\) |
\(\langle 4 \mid\) | \(0\) | \(0\) | \(0\) | \(-\frac{3}{4}A+\frac{1}{2}C-\frac{3}{2}D\) | \(0\) | \(0\) | \(\frac{\sqrt{3}}{2}A\) | \(0\) |
\(\langle 5 \mid\) | \(0\) | \(\frac{\sqrt{3}}{2}A\) | \(0\) | \(0\) | \(-\frac{3}{4}A-\frac{1}{2}C+\frac{3}{2}D\) | \(0\) | \(0\) | \(0\) |
\(\langle 6 \mid\) | \(0\) | \(0\) | \(A\) | \(0\) | \(0\) | \(-\frac{1}{4}A-\frac{1}{2}C+\frac{1}{2}D\) | \(0\) | \(0\) |
\(\langle 7 \mid\) | \(0\) | \(0\) | \(0\) | \(\frac{\sqrt{3}}{2}A\) | \(0\) | \(0\) | \(\frac{1}{4}A-\frac{1}{2}C-\frac{1}{2}D\) | \(0\) |
\(\langle 8 \mid\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(\frac{3}{4}A-\frac{1}{2}C-\frac{3}{2}D\) |
Numerical Results
Python code
import numpy as np |
Results
Reference
C. J. Pethick, H. Smith, Bose-Einstein Codensation in Dilute Gases