Special Functions

Legendre Polynomials

Legendre Equation

Equation

\begin{align} (1-x^2) P''(x) - 2xP'(x) + \lambda P(x) = 0 \label{eq:leq} \end{align}

Boundary conditons

\[\mathrm{Nonsingularity at} x = \pm 1\]

Frobenius' Methods

尝试级数解

\begin{align} P(x) =& x^{s} (a_0 + a_1 x + a_2 x^2 + \cdots) \\ =& \sum_{j=0}^{\infty}a_j x^{s+j}, \quad a_0 \neq 0 \end{align}

代回原始方程 \eqref{eq:leq} , 得

\begin{align} \sum_{j=0}^{\infty}\left[ a_j (s+j) (s+j-1) x^{s+j-2} - a_j (s+j) (s+j-1) x^{s+j} - 2(s+j)a_j x^{s+j} + \lambda a_j x^{s+j} \right] = 0 \end{align}

\(j=0\) 时, 得 \(x\) 的最低阶即 \(x-2\) ,对应的系数方程为

\begin{align} a_0 s (s-1) = 0 \end{align}

\(j=1\) 时

\begin{align} a_1 (s+1)s = 0 \end{align}

并且 \(a_0\neq 0\) , 所以

\begin{align} s(s-1) = 0 \quad \quad \mathrm{(indical\quad equation)} \end{align}

即 \(s=0\) 或 \(s=1\)

\(s=0\)

此时得 recurrence relation 为

\begin{align} a_{j+2} = \frac{j(j+1)-\lambda}{(j+1)(j+2)}a_j \end{align}

假设 \(a_1 = 0\) . 那么所有的奇数项都为 \(0\) . 当 \(j\to \infty\) 时, 级数 解 \(P(x = \pm 1)\) 不收敛, 不满足边界条件. 使其收敛, \(\lambda\) 必须取

\begin{align} \lambda = l(l+1) \end{align}

其中 \(l\) 是偶数. 这样的话, 级数解就在 \(l\) 阶截断了.

\(s=1\)

此时得 recurrence relation 为

\begin{align} a_{j+2} = \frac{(j+1)(j+2) -\lambda}{(j+2)(j+3)} a_j \end{align}

而且必须有 \(a_1=0\) 那么此时所有的奇数项都为 \(0\) . 此时截断的条件为

\begin{align} \lambda = (l+1)(l+2) \end{align}

其中 \(l\) 是偶数.

合并

\(s=0, a_1 = 0\) 时, 对应的级数解, 都是 \(x\) 的偶数次幂. \(s = 1\) 时, 对应 的级数解, 都是 \(x\) 的奇数次幂, 其实对应于 \(s=0, a_1 \neq 0\) 时解. 两种 \(s\) 的取值, 对应的截断条件也可以合并为

\begin{align} \lambda = l(l+1) \end{align}

其中 \(l\) 是整数. 合并的 recurrence relation 为

\begin{align} a_{j+2} = \frac{j(j+1)-\lambda}{(j+1)(j+2)}a_j \end{align}

有 \(a_1, a_2\) 两个待定的系数, 这恰好是一个二阶微分方程所需要的!

Legendre Polynomials

下面是画前七阶 Legendre Polynomials 的图像

import numpy as np
from matplotlib import pyplot as plt
def P(N,x):
l = N*(N+1)
a = np.zeros(N+1)
k = N//2

if N > 0:
if N%2 == 0:
a[0] = (-1)**k
a[1] = 0
if N%2 == 1:
a[0] = 0
a[1] = (-1)**k

for j in range(N-1):
a[j+2] = j*(j+1) - l
a[j+2] = a[j+2] * a[j]
a[j+2] = a[j+2] / (j+1)
a[j+2] = a[j+2] / (j+2)
a = a/a.sum()
s = 0
for i in range(N+1):
s = s + a[i]*x**i
else:
s =1
return s
n = 1000
nn = 8
x = np.linspace(-1,1,n)
y = np.zeros(n)
plt.figure(figsize=(6.0,10.0)) # must before plt.plot(x,y)
for i in range(nn):
for j in range(n):
y[j] = P(i,x[j])
t = "$P_ { %s }(x)$"%i
plt.plot(x,y,label=t)
plt.xlabel(r"$x$")
plt.ylabel(r"$P_ { l }(x)$")
plt.title("Legendre Polynomials")
plt.legend()
plt.savefig("./2019-06-03-专业笔记-PartialWaveExpansion/LegenderPolynomials.jpg"\
,writer='imageffmagick', dpi=100)

下面是用 sympy 输出前七阶 Legendre Polynomials

from sympy import Rational as R
from sympy import Symbol
from sympy import factor
from sympy import latex

def P(N):
l = N*(N+1)
a = []
k = N//2
if N%2 == 0:
a.append((-1)**k)
a.append(0)
if N%2 == 1:
a.append(0)
a.append((-1)**k)
for j in range(N-1):
a.append(j*(j+1) - l )
a[j+2] = a[j+2] * a[j]
a[j+2] = R( a[j+2] , (j+1) )
a[j+2] = R( a[j+2] , (j+2) )

c = 0
for i in range(N+1):
c = c + a[i]

P = 0
x = Symbol('x')
for i in range(N+1):
a[i] = R(a[i], c) * x**i
P = P + a[i]
P = latex(P)
return P

for i in range(8):
print(r'P_%d(x)=&'%i,P(i),"\\\\")

结果

\begin{align*} : P_0(x)=& 1 \\ : P_1(x)=& x \\ : P_2(x)=& \frac{3 x^{2} - 1}{2} \\ : P_3(x)=& \frac{x \left(5 x^{2} - 3\right)}{2} \\ : P_4(x)=& \frac{35 x^{4} - 30 x^{2} + 3}{8} \\ : P_5(x)=& \frac{x \left(63 x^{4} - 70 x^{2} + 15\right)}{8} \\ : P_6(x)=& \frac{231 x^{6} - 315 x^{4} + 105 x^{2} - 5}{16} \\ : P_7(x)=& \frac{x \left(429 x^{6} - 693 x^{4} + 315 x^{2} - 35\right)}{16} \\ \end{align*}

其中 \(a_1\) 和 \(a_0\) r 取为, 满足 \(P_l(1) = 1\) , 并且 \(x\) 的最高次幂的 系数为正的值.

Orthogonality

Legendre Polynomials 的正交归一性为

\begin{align} \int_{-1}^{1} P_l(x)P_m(x) \cdot \mathrm{d}x = \frac{2 \delta_{lm}}{2l+1} \end{align}

Associated Legendre Functions

Associated Legendre Equation

\begin{align} (1-x^2) P''(x) -2x P'(x) + \left[ \lambda - \frac{m^2}{1-x^2} \right]P(x) = 0 \end{align}

分母中的 \(1-x^2\) 是个问题, 尝试通过做变换把它从分母中去掉. 令

\begin{align} P(x) = (1-x^2)^p \mathcal{P}(x) \end{align}

原式变为

\begin{align} \mathcal{P}(1-x^2)^{p-1}\left[ -2p(1+x^2) + 4p^2 x^2 +4px^2 +\lambda(1-x^2) -m^2 \right]\\ -2x \mathcal{P}'(1-x^2)^p(2p + 1) + \mathcal{P}''(1-x^2)^{p+1} = 0 \end{align}

这和原来的 Legendre equation 有些类似. \(\mathcal{P}\) 的系数中有 \(\lambda(1-x^2)\) 而且如果我们能提取出一个 \(1-x^2\) 话, 它和 Legendre equation 就更像了. 我们还有 \(p\) 是可调的, 可以令常数项和 \(x^{2}\) 项前 面的系数差一负号, 就可以提出啦! 即

\begin{align} -2p+4p^2+4p = -(-2p-m^2) \end{align}

得 \(p = \frac{m}{2}\) .将它代回, 就可以得到

\begin{align} (1-x^2)\mathcal{P}''- 2x(m+1)\mathcal{P}' + \left[ \lambda - m(m+1) \right]\mathcal{P} = 0 \end{align}

Frobenius' Methods

这个变换后的方程就可以由 Frobenius' Methods 得到级数解

尝试级数解

\begin{align} P(x) =& x^{s} (a_0 + a_1 x + a_2 x^2 + \cdots) \\ =& \sum_{j=0}^{\infty}a_j x^{s+j}, \quad a_0 \neq 0 \end{align}

代回原始方程 \eqref{eq:leq} , 得

\begin{align} \sum_{j=0}^{\infty} \left[ (s+j)(s+j-1)a_jx^{s+j-2} -(s+j)(s+j-1)a_jx^{s+j} \\ -2a_j(m+1)(s+j)x^{s+j} + a_j(\lambda -m(m+1))x^{s+j} \right] = 0 \end{align}

\(j=0\) 时, 得 \(x\) 的最低阶即 \(x-2\) ,对应的系数方程为

\begin{align} a_0 s (s-1) = 0 \end{align}

\(j=1\) 时

\begin{align} a_1 (s+1)s = 0 \end{align}

并且 \(a_0\neq 0\) , 所以得到了和 Legendre equation 一样的 indical equation

\begin{align} s(s-1) = 0 \quad \quad \mathrm{(indical\quad equation)} \end{align}

即 \(s=0\) 或 \(s=1\)

当 $s=0$时, recurrence relation 为

\begin{align} a_{j+2} = \frac{(j+m)(j+m+1)-\lambda}{(j+1)(j+2)}a_j \end{align}

假设 \(a_1 = 0\) . 那么所有的奇数项都为 \(0\) . 当 \(j\to \infty\) 时, 级数 解 \(P(x = \pm 1)\) 不收敛, 不满足边界条件. 使其收敛, \(\lambda\) 必须取

\begin{align} \lambda = (j+m)(j+m+1) \end{align}

其中 \(l\) 是偶数. 这样的话, 级数解就在 \(l\) 阶截断了. 与 Legendre equation 类似, \(s=1\) 时得到的结果是对应的奇数项, 所以 \(l\) 取整数就是最 后的结果.

  • \(\lambda = l(l+1)\)

    在实际问题中, 一般 \(\lambda = l(l+1)\) , 此时截断为

    \begin{align} j = l - m \end{align}

    也就是说只有在 \(m\le l\) 时才有收敛的解.

Bessel Functions

Bessel ODE

\begin{align} x^2 J_{\nu}'' +x J_{\nu}' + (x^2 - \nu^2)J_{\nu} = 0 \end{align}

Frobenius' Methods and Bessel Functions of the First Kind

尝试级数解

\begin{align} J_{\nu}(x) =& x^{s} (a_0 + a_1 x + a_2 x^2 + \cdots) \\ =& \sum_{j=0}^{\infty}a_j x^{s+j}, \quad a_0 \neq 0 \end{align}

代回 Bessel ODE , 得

\begin{align} \sum_{j = 0}^{\infty} \left[ (s+j)(s+j-1) + (s+j) -\nu^2 \right] a_j x^j + a_{j}x^{j+2} = 0 \end{align}

\(j=0\) 时, 得 \(x\) 的最低阶即 \(x\) ,对应的系数方程为

\begin{align} ( s^2 - \nu^2 ) a_0 = 0 \end{align}

并且 \(a_0\neq 0\) , 所以

\begin{align} (s+\nu)(s-\nu) = 0 \quad \quad \mathrm{(indical\quad equation)} \end{align}

\begin{align} s = \pm \nu \end{align}

\(j=1\) 时

\begin{align} (s+1+\nu)(s+1-\nu)a_1 = 0 \end{align}

由于 \(s = \pm \nu\) , 所以 \(a_1 = 0\)

以下先讨论 \(\nu = n\) 是整数的情况

\(s = n\)

此时得 recurrence relation 为

\begin{align} a_{j+2} = - \frac{1}{(j+2)(2n +j + 2)} a_j \end{align}

任意系数为

\begin{align} a_{2p} = (-1)^p \frac{a_0 n!}{2^{2p}p! (n+p)!} \end{align}

Bessel ODE 的解为

\begin{align} J_n(x) = \sum_{s=0}^{\infty} \frac{(-1)^s}{s!(n+s)!} \left( \frac{x}{2} \right)^{n+2s} \end{align}

上式中按习惯取 \(a_0 = \frac{1}{2^n n!}\) .

\(s = -n\)

此时得 recurrence relation 为

\begin{align} a_{j+2} = \frac{1}{(j+2)(2n -j - 2)} a_j \end{align}

当 \(j = 2n-2\) 时上式发散, 并且不满足级数是从 \(x^{-n}\) 开始的假设. 因此 \(s = -n\) 不给出解.

\(\nu = n\) 是整数的情况给出了 Bessel 的一个解, 称为 Bessel function of first kink. 且有以下性质

\begin{align} J_{-n}(x) = (-1)^n J_n(x) \end{align}

code

下面是画前3阶 Bessel functions of the first kind 的图像

import numpy as np
from matplotlib import pyplot as plt
import time

start = time.process_time()

def J(n,x,up=10):
J = 0
for s in range(up):
js = (-1)**s
js = js/(np.math.factorial(s))
js = js/(np.math.factorial(s+n))
js = js*(x/2)**(n+2*s)
J = J + js
return J


N = 1000
x = np.linspace(1e-8,30,N)
up =100
def pltj(J,n,x,N):
j = np.zeros(N)
for i in range(N):
j[i] = J(n,x[i],up = up)
return j

for i in range(4):
l = r"$J _ { %d } (x)$" %i
plt.plot( x, pltj(J,i,x,N), label = l)

plt.plot(x, 1/np.sqrt(x),label=r"$x^{-1/2}$")

plt.ylim(-.5,1.)
plt.xlabel("x")
plt.ylabel(r"$J_n(x)$")
plt.legend()
plt.title("Bessel Functions")

end = time.process_time()
print('time is',end-start)
plt.savefig("./2019-06-03-专业笔记-PartialWaveExpansion/BFF.jpg"\
,writer='imageffmagick', dpi=100)

可以看出它在 \(x=0\) 处没有发散.

the Bessel Functions of the Second Kind

Definition

Bessel ODE 是一个二阶微分方程, 它应该有两个独立的解. 上面 \(\nu\) 取整数 的时候只给出了一个解. 它的另一个解由 Neumann functions 给出, 定义如下

\begin{align} Y_{\nu}(x) = \frac{\cos (\nu\pi) J_{\nu}(x)-J_{-\nu(x)}}{\sin(\nu\pi)} \end{align}

当 \(\nu\) 不整数的时候, 上式就是 Bessel functions of the first kind 的 线性组合. 当 \(\nu = n\) 取整数的时候, 它应取极限

\begin{align} Y_n(x) = \lim_{\nu\to n}Y_{\nu}(x) \end{align}

它在 \(x = 0\) 处是发散的. 它就是 Bessel Functions 的第二个解, Bessel functions of the second kind . 这里不详细讨论它.

Hankel Functions

Hankel Functions 曾经也常被叫做 Bessel functions of the third kind . 它由 Bessel functions of the first kind and the second kind 的线性 组合定义

\begin{align} H_{\nu}^{(1)} = J_{\nu}(x) + \mathrm{i}Y_{\nu}(x) \\ H_{\nu}^{(2)} = J_{\nu}(x) - \mathrm{i}Y_{\nu}(x) \end{align}

Modified Bessel Functions

MOdified Bessel equation

\begin{align} \rho^2 \frac{\mathrm{d}^2}{\mathrm{d}\rho^2}P_{\nu}(k\rho) + \rho \frac{\mathrm{d}}{\mathrm{d}\rho}P_{\nu}(k\rho) - (k^2\rho^2 + \nu^2) P_{\nu} P_{\nu}(k\rho) = 0 \end{align}

它与 Bessel ODE

\begin{align} x^2 J_{\nu}'' +x J_{\nu}' + (x^2 - \nu^2)J_{\nu} = 0 \end{align}

相比, 在于 \(k^2\rho^2\) 前面的符号变了.

Modified Bessel Functions of the First Kind

它的解只须做代换 \(k\to \mathrm{i}k\) 即可得到, 即 modified Bessel functions of the first kind

\begin{align} I_{\nu}(x) = \mathrm{i}^{-\nu}J_{\nu}(\mathrm{i}x) = \sum_{s=0}^{\infty} \frac{1}{s!\Gamma(s+\nu+1)} \left( \frac{x}{2} \right)^{\nu+2s} \end{align}

它的系数都是正的, 没有振荡. 它有

\begin{align} I_n(x) = I_{-n}(x) \end{align}

Code

下面是画前3阶 modified Bessel functions of the first kind 的图像

import numpy as np
from matplotlib import pyplot as plt
import time

start = time.process_time()

def J(n,x,up=10):
J = 0
for s in range(up):
js = 1/(np.math.factorial(s))
js = js/(np.math.factorial(s+n))
js = js*(x/2)**(n+2*s)
J = J + js
return J


N = 1000
x = np.linspace(1e-8,3,N)
up =100
def pltj(J,n,x,N):
j = np.zeros(N)
for i in range(N):
j[i] = J(n,x[i],up = up)
return j

for i in range(4):
l = r"$I _ { %d } (x)$" %i
plt.plot( x, pltj(J,i,x,N), label = l)


plt.xlabel("x")
plt.ylabel(r"$I_n(x)$")
plt.legend()
plt.title("Modified Bessel Functions")

end = time.process_time()
print('time is',end-start)
plt.savefig("./2019-06-03-专业笔记-PartialWaveExpansion/MBFF.jpg"\
,writer='imageffmagick', dpi=100)

Modified Bessel Functions of the Second Kind

modified Bessel functions of the second kind 有时也叫做 Whittaker functions , 定义如下

\begin{align} K_{\nu}(x) = \frac{\pi}{2}\frac{I_{-\nu}(x)-I_{\nu}(x)}{\sin(\nu\pi)} \end{align}

moddified Bessel function 对于 Bessel function 的关系, 就像 \(\sinh\) 对 于 \(\sin\) 的关系, 所以有时它们也叫做 hyperbolic Bessel functions .

Spherical Bessel Functions

对于球对称的问题, 经常会遇到径向方程

\begin{align} r^2 \frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + 2r \frac{\mathrm{d}R}{\mathrm{d}r} +[k^2r^2 - l(l + 1)]R = 0 \end{align}

这个方程和 Bessel ODE 很像, 区别在于 \(l(l+1)\) , 而不是一个数的平方. 但 是只要做如下变量代换

\begin{align} R(kr) = \frac{Z(kr)}{\sqrt{kr}} \end{align}

就可以化为 Bessel ODE 的形式

\begin{align} r^2 \frac{\mathrm{d}^2 Z}{\mathrm{d}r^2} + r \frac{\mathrm{d}Z}{\mathrm{d}r} +\left[ k^2r^2 -\left( l + \frac{1}{2} \right) \right]Z = 0 \end{align}

那么它的解就可以写出

\begin{align} R(kr) = \frac{C}{\sqrt{kr}}J_{l+1/2}(kr) \end{align}

它就是 Spherical Functions . \(C\) 是一个任意常数, 因为方程是齐次的

Definition

取定常数 \(C\) , Spherical Functions 定义如下

\begin{align} j_n(x) =& \sqrt{\frac{\pi}{2x}}J_{n+1/2}(x) \\ y_n(x) =& \sqrt{\frac{\pi}{2x}}Y_{n+1/2}(x) \\ h_n^{(1)}(x) =& j_n(x) +\mathrm{i}y_n(x) \\ h_n^{(2)}(x) =& j_n(x) -\mathrm{i}y_n(x) \\ \end{align}

Some Examples

\begin{align} j_0(x) =& \quad\frac{1}{x}\sin x \\ y_0(x) = & - \frac{1}{x}\cos x \end{align} \begin{align} j_1(x) =&\quad \frac{1}{x^2}\sin x - \frac{1}{x}\cos x \\ y_1(x) =&-\frac{1}{x^2}\cos x -\frac{1}{x}\sin x \end{align} \begin{align} j_2(x) = & \quad\left( \frac{3}{x^3} - \frac{1}{x} \right)\sin x -\frac{3}{x^2}\cos x \\ y_2(x) = & -\left( \frac{3}{x^3} -\frac{1}{x} \right)\cos x - \frac{3}{x^2}\sin x \end{align} \begin{align} j_3(x) = &\quad \left( \frac{15}{x^4} - \frac{6}{x^2} \right)\sin x +\left( - \frac{15}{x^3} + \frac{1}{x} \right) \cos x \\ y_3(x) = & -\left( \frac{15}{x^4} -\frac{6}{x^2} \right) \cos x +\left( -\frac{15}{x^3} + \frac{1}{x} \right) \sin x \end{align}

Asymptotic Forms

as \(x \to \infty\)

\begin{align} j_n(x) =& \frac{1}{x}\sin (x - \frac{n\pi}{2}) \\ y_n(x) =& - \frac{1}{x}\cos (x - \frac{n\pi}{2}) \end{align}

Closure Relation

Closure Relation for spherical Bessel functions

\begin{align} \int_0^{\infty} r^2 j_l(k_1r)j_l(k_2r) \mathrm{d}r = \frac{\pi}{2k_1^2}\delta(k_1-k_2) \end{align}

Spherical Harmonics

Associated Legendre Functions

\begin{align} P_l^m(x) = (-1)^m \frac{\mathrm{d}^m}{\mathrm{d}x^m}P_l(x) \end{align}

Spherical Harmonics

\begin{align} Y_l^m (\theta,\phi) \equiv \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta)e^{\mathrm{i}m\phi} \end{align}

它们在整个球面上是正交归一的

\begin{align} \int_0^{2\pi} \mathrm{d}\phi \int_0^{\pi}\sin \theta \mathrm{d}\theta \left[ Y_{l_1}^{m_1} (\theta,\phi) \right]^{*} Y_{l_2}^{m_2} (\theta,\phi) =\delta_{l_1l_2} \delta_{m_1m_2} \end{align}

Summary

Legendre equation and its orthogonality

\begin{align} (1-x^2) P''(x) - 2xP'(x) + \lambda P(x) = 0 \end{align} \begin{align} \int_{-1}^{1} P_l(x)P_m(x) \cdot \mathrm{d}x = \frac{2 \delta_{lm}}{2l+1} \end{align}

associated Legendre equation

\begin{align} (1-x^2) P''(x) -2x P'(x) + \left[ \lambda - \frac{m^2}{1-x^2} \right]P(x) = 0 \end{align}

解为

\begin{align} P_l^m(x) = (-1)^m \frac{\mathrm{d}^m}{\mathrm{d}x^m}P_l(x) \end{align}

Spherical Harmonics

\begin{align} Y_l^m (\theta,\phi) \equiv \sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta)e^{\mathrm{i}m\phi} \end{align}

orthogonality

\begin{align} \int_0^{2\pi} \mathrm{d}\phi \int_0^{\pi}\sin \theta \mathrm{d}\theta \left[ Y_{l_1}^{m_1} (\theta,\phi) \right]^{*} Y_{l_2}^{m_2} (\theta,\phi) =\delta_{l_1l_2} \delta_{m_1m_2} \end{align}

Bessel ODE

\begin{align} x^2 J_{\nu}'' +x J_{\nu}' + (x^2 - \nu^2)J_{\nu} = 0 \end{align}

the Bessel functions of the first kind

\begin{align} J_{-n}(x) = (-1)^n J_n(x) \end{align}

Neumann functions ( the Bessel functions of the second kind )

\begin{align} Y_{\nu}(x) = \frac{\cos (\nu\pi) J_{\nu}(x)-J_{-\nu(x)}}{\sin(\nu\pi)} \end{align} \begin{align} Y_n(x) = \lim_{\nu\to n}Y_{\nu}(x) \end{align}

Hankel Functions, 曾经也常被叫做 Bessel functions of the third kind . 它由 Bessel functions of the first kind and the second kind 的线性组 合定义

\begin{align} H_{\nu}^{(1)} = J_{\nu}(x) + \mathrm{i}Y_{\nu}(x) \\ H_{\nu}^{(2)} = J_{\nu}(x) - \mathrm{i}Y_{\nu}(x) \end{align}

MOdified Bessel equation

\begin{align} \rho^2 \frac{\mathrm{d}^2}{\mathrm{d}\rho^2}P_{\nu}(k\rho) + \rho \frac{\mathrm{d}}{\mathrm{d}\rho}P_{\nu}(k\rho) - (k^2\rho^2 + \nu^2) P_{\nu} P_{\nu}(k\rho) = 0 \end{align}

\(k^2\rho^2\) 前面的符号变了 Modified Bessel Functions of the First Kind

\begin{align} I_n(x) = I_{-n}(x) \end{align}

它没有振荡. 它的另一个解为 Modified Bessel Functions of the Second Kind

\begin{align} K_{\nu}(x) = \frac{\pi}{2}\frac{I_{-\nu}(x)-I_{\nu}(x)}{\sin(\nu\pi)} \end{align}

Spherical Bessel Functions

\begin{align} r^2 \frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + 2r \frac{\mathrm{d}R}{\mathrm{d}r} +[k^2r^2 - l(l + 1)]R = 0 \end{align} \begin{align} j_n(x) =& \sqrt{\frac{\pi}{2x}}J_{n+1/2}(x) \\ y_n(x) =& \sqrt{\frac{\pi}{2x}}Y_{n+1/2}(x) \\ h_n^{(1)}(x) =& j_n(x) +\mathrm{i}y_n(x) \\ h_n^{(2)}(x) =& j_n(x) -\mathrm{i}y_n(x) \\ \end{align}

asymptotic as \(x\to\infty\)

\begin{align} j_n(x) =& \frac{1}{x}\sin (x - \frac{n\pi}{2}) \\ y_n(x) =& - \frac{1}{x}\cos (x - \frac{n\pi}{2}) \end{align}

Closure Relation for spherical Bessel functions

\begin{align} \int_0^{\infty} r^2 j_l(k_1r)j_l(k_2r) \mathrm{d}r = \frac{\pi}{2k_1^2}\delta(k_1-k_2) \end{align}

Reference

梁昆淼编, 刘法,缪国庆修订, 数学物理方法(第四版)

  • 11.5 球贝塞尔方程

Arfken, Weber, Harris, Mathematical Methods for Physicists 7ed:

  • Chap 7.5 Series Solutions-Frobenius' Methods
  • Example 8.3.1 Legendre Equation
  • Chap 14 Bessel Functions
  • Chap 15.1 Legendre Polynomials

J. J Sakurai, Jim Napolitano, Modern Quantum Mechanics 2ed:

  • Chap 6.4 Phase Shifts and Partial Waves

R. Mehrem, arXiv:0909.0494v4: https://arxiv.org/pdf/0909.0494.pdf