---
问题
已知 $H=H_0 +V_t$,其中 $V_t = \hat{B} F_t$ ,为一外场 $F_t$ 对原有系统造成的微扰,$\hat{B}$ 是系统中与外场 $F_t$ 相耦合的力学量。求某力学量 $\hat{A}$ 在 $t$ 时刻系综平均值 $\langle A \rangle_t$ 与 $0$ 时刻的系综平均值 $\langle A \rangle_0$ 系综平均值 $\langle A \rangle_t -\langle A \rangle_0 $ 差的近似结果。
现取一特例,假设外场 $F_t$ 就是磁场 $\vec{B_t}$ ,那么系统中与外场 $\vec{B_t}$ 相耦合的力学量就是系统的总磁矩 $\vec{m}$ ,总磁矩 $\vec{m}$ 对应的微观量是系统中单个电子的自旋 $\vec{S_i}$ ,下标 $i$ 代表第 $i$ 个电子。其关系为: $$ \vec{m} = \sum_i \vec{m_i} = \frac{g_J \mu_B}{\hbar} \sum_i \vec{S_i} $$ 假设测量量为磁化强度 $\vec{M} = \vec{m}/V$
所以对应关系为: $$ \hat{B} \longleftrightarrow \vec{m} $$
$$ F_t \longleftrightarrow \vec{B} $$
$$ \hat{A} \longleftrightarrow \vec{M} $$
初步路线
写出详细表达式进行具体计算: $$ \langle \vec{M} \rangle_t -\langle\vec{ M} \rangle_0 = \mathrm{Tr} [(\rho_t - \rho_0)\hat{M}] = \frac{1}{V}\cdot \frac{g_J \mu_B}{\hbar}\sum_i \mathrm{Tr} [(\rho_t - \rho_0)\vec{S_i}] $$ 接下来求 $\rho_t - \rho_0$ 。
求 $t$ 时刻密度矩阵的近似值
Dirac表象中密度矩阵的运动方程: $$ \dot{\rho_t^D} = \frac{1}{i\hbar} [V_t^D, \rho_t^D] $$ 假设初值条件为: $$ \lim_{t\rightarrow -\infty}\rho_t^D(t) =\lim_{t\rightarrow -\infty}\rho_t = \rho_0 = \frac{e^{-\beta H_0}}{\mathrm{Tr}(e^{-\beta H_0})} $$ Dirac表象选取 $t_0=0$ 为时间基点,也就是 $U(t,t_0)=e^{\frac{1}{i\hbar}(t-t_0)H_0}=e^{\frac{1}{i\hbar}H_0 t} = U(t)$
所以 $t$ 时刻密度矩阵可迭代求解: $$ \rho_t^D = \rho_0 +\frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' [V_{t'}^D, \rho_{t'}^D] =\rho_0 +\frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' [V_{t'}^D, \rho_0] +\cdots $$ 做近似,只取线性项得: $$ \rho_t^D \approx \rho_0 +\frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' [V_{t'}^D, \rho_0] $$ 换到薛定谔表象: $$ \rho_t \approx \rho_0 +\frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' U(t)[V_{t'}^D, \rho_0]U^{\dagger}(t) $$
求解结果
将 $t$ 时刻密度矩阵的近似结果 $$ \rho_t - \rho_0 \approx \frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' U(t)[V_{t'}^D, \rho_0]U^{\dagger}(t) $$ 代入到详细表达式进行具体计算: $$ \mathrm{Tr} [(\rho_t - \rho_0)\vec{S_i}] = \frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' \mathrm{Tr} \left( U(t)[V_{t'}^D, \rho_0]U^{\dagger}(t) \vec{S_i}\right) $$ 而 $$ V_{t'} = -\vec{m}\cdot \vec{B_{t'}} = -\sum_{\alpha = x,y,z} m^{\alpha} B_{t'}^{\alpha} = -\sum_{\alpha = x,y,z} \sum_i \frac{g_J\mu_B}{\hbar} S_i^{\alpha} B_{t'}^{\alpha} $$ 所以 $$ \mathrm{Tr} \left( U(t)[V_{t'}^D, \rho_0]U^{\dagger}(t) \vec{S_i}\right) = \mathrm{Tr} \left( [V_{t'}^D, \rho_0] \vec{S_i}(t)\right) = -\sum_{\alpha = x,y,z} \sum_i \frac{g_J\mu_B}{\hbar} \mathrm{Tr}\left( [S_i^{\alpha}(t'),\rho_0] \vec{S_i}(t) \right)B_{t'}^{\alpha} $$ 而 $$ \mathrm{Tr}\left( [S_i^{\alpha}(t'),\rho_0] \vec{S_i}(t) \right) = \mathrm{Tr}\left( \rho_0 [\vec{S_i}(t),S_i^{\alpha}(t')] \right) = \langle [\vec{S_i}(t),S_i^{\alpha}(t')]\rangle_0 $$ 所以 $$ \mathrm{Tr} [(\rho_t - \rho_0)\vec{S_i}] = -\sum_{\alpha = x,y,z} \sum_i \frac{g_J\mu_B}{\hbar} \frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' B_{t'}^{\alpha} \langle [\vec{S_i}(t),S_i^{\alpha}(t')]\rangle_0 $$
$$ \langle M \rangle_t -\langle M \rangle_0 = \mathrm{Tr} [(\rho_t - \rho_0)\hat{M}] = -\frac{1}{V}\cdot \frac{g_J \mu_B}{\hbar}\sum_{\alpha = x,y,z} \sum_i \frac{g_J\mu_B}{\hbar} \sum_i \frac{1}{i\hbar} \int_{-\infty}^t \mathrm{d}t' B_{t'}^{\alpha}\langle [\vec{S_i}(t),S_i^{\alpha}(t')]\rangle_0 $$
注
Wolfgang Nolting, Fundamentals of Many-body Physics, 3.1节笔记
易混淆的量
- magnetetic susceptibility 磁化率: $\chi$
- magnetic moment 总磁矩:$\vec{m}$
- magnetisation 磁化强度:$\vec{M}$