三种格林函数的定义

  • Retarted Grenn's Function \begin{align*} G_{AB}^{\mathrm{ret}}(t,t') \equiv \langle\langle A(t);B(t')\rangle\rangle ^{\mathrm{ret}}=-\mathrm{i}\theta(t-t')\langle [A(t),B(t')]_{-\varepsilon}\rangle \end{align*}
  • Advanced Grenn's Function \begin{align*} G_{AB}^{\mathrm{adv}}(t,t') \equiv \langle\langle A(t);B(t')\rangle\rangle^{\mathrm{adv}}=\mathrm{i}\theta(t'-t)\langle [A(t),B(t')]_{-\varepsilon}\rangle \end{align*}
  • Causal Grenn's Function \begin{align*} G_{AB}^{\mathrm{c}} \equiv& \langle\langle A(t):B(t')\rangle\rangle^{\mathrm{c}}-\mathrm{i}\langle T_{\varepsilon}(A(t)B(t'))\rangle \\ & -\mathrm{i}\left[\theta(t-t')A(t)B(t')-\varepsilon B(t')A(t)\right] \end{align*}
  • 在解格林函数运动方程时,常用的是推迟和超前格林函数,而diagram techniques中常用因果格林函数。
  • 根据定义就可以验证它们之间的关系:$G_{AB}^{\mathrm{ret}}(t,t')=\varepsilon G_{BA}^{\mathrm{adv}}(t,t')$

谱密度的定义

  • Spectral Density \begin{align*} S_{AB}(t,t') = \frac{1}{2\pi}\langle [A(t),B(t')]_{-\varepsilon}\rangle \end{align*}
  • 谱密度所包含的与格林函数完全相同的信息。

关联函数的定义

  • 为了证明格林函数和谱密度对于时间是各向同性(homogeneous in time)的,也就是它们的值只与$t-t'$有关,而与$t$和$t'$的具体位置无关,定义关联函数为 \begin{align*} \langle A(t)B(t')\rangle\\ \langle B(t')A(t)\rangle \end{align*} 这样,只须证明关联函数对于时间的各向同性,即可证明格林函数和谱密度对于时间的各向同性。

运动方程

  • 时间表象的equation of motion,对格林函数的定义式求时间的偏层数即可得到 \begin{align*} i\hbar \frac{\partial}{\partial t}G_{AB}^{\alpha}(t,t') = \hbar\delta(t-t')\langle [A,B]_{-\varepsilon}\rangle +\langle\langle[A,H]_{-}(t);B(t')\rangle\rangle^{\alpha} \end{align*}
  • 将其变换到能量表象 \begin{align*} E\langle\langle A;B \rangle\rangle_{E}^{\alpha} \hbar\langle [A,B]_{\varepsilon}\rangle +\langle\langle [A,H]_{-};B\rangle\rangle _{E}^{\alpha} \end{align*} 格林函数在$t-t'\pm \infty$ 时为零?

谱表示

  • 谱密度的谱表示 \begin{align*} S_{AB}(E) =& \frac{\hbar}{\Xi}\sum_{n,m}\langle E_{n}\mid B\mid E_{m} \rangle \langle E_{m} \mid A \mid E_{n}\rangle e^{-\beta E_{n}}\cdot \\ &\cdot (e^{\beta E} -\varepsilon)\delta [E-(E_{n}-E_{m})] \end{align*}
  • 推迟格林函数的谱表示 \begin{align*} G_{AB}^{\mathrm{ret}}(E) = \int _{-\infty}^{+\infty} \mathrm{d}E' \frac{S_{AB}(E')}{E-E'+\mathrm{i}0^{+}} \end{align*}
  • 超前格林函数的谱表示 \begin{align*} G_{AB}^{\mathrm{ret}}(E) = \int _{-\infty}^{+\infty} \mathrm{d}E' \frac{S_{AB}(E')}{E-E'-\mathrm{i}0^{+}} \end{align*}
  • 因果格林函数的谱表示 \begin{align*} G_{AB}^{\mathcal{c}} =& \frac{\hbar}{\Xi} \sum_{n,m} \langle E_{n}\mid B \mid E_{m}\rangle\langle E_{m} \mid A \mid E_{n} \rangle e^{-\beta E_{n}}\cdot\\ &\cdot \left[ \frac{e^{\beta(E_{n}-E_{m})}}{E-(E_{n}-E_{m})+\mathrm{i}0^{+}} - \frac{\varepsilon}{E-(E_{n}-E_{m})-\mathrm{i}0^{+}} \right] \end{align*}

谱定理

  • 谱定理描述了关联函数和谱密度之间的关系 \begin{align*} \langle B(t')A(t)\rangle = \frac{1}{\hbar}\int_{-\infty}^{+\infty}\mathrm{d}E \frac{S_{AB}^{(\varepsilon)}(E)}{e^{\beta E}-\varepsilon}e^{-\frac{\mathrm{i}}{\hbar}E(t-t')} +\frac{1}{2}(1+\varepsilon)D \end{align*}
  • 其中的常数$D$可以由以下式子求得 \begin{align*} \lim _{E\rightarrow0} EG_{AB}^{(\varepsilon)} \end{align*}

Exact Expressions

  • 判定近似的方法之一 \begin{align*} \left(G_{AB}^{\mathrm{ret,adv}}(t,t')\right) ^{*} = \varepsilon G_{A^{\dagger}B^{\dagger}}^{\mathrm{ret,adv}}(t,t') \end{align*} 也就是说,对易格林函数是实的,反对易格林函数是虚的。
  • 判定近似的方法之二 \begin{align*} \lim _{E\rightarrow\infty}G_{AB}^{\alpha}(E) \approx \frac{\hbar}{E}\langle [A,B]_{-\varepsilon}\rangle \end{align*}
  • Sepctral Monments 的定义 \begin{align*} M_{AB}^{\alpha} = \frac{1}{\hbar}\int_{-\infty}^{+\infty} \mathrm{d} E\, E^{n} S_{AB}(E) \end{align*}

Kramers-Kronig relations

- \begin{align*} \mathrm{Re} G_{AB}^{ \begin{matrix} \mathrm{ret}\\ \mathrm{adv} \end{matrix} } (E) = \mp \frac{1}{\pi}\mathcal{P} \int_{-\infty}^{+\infty}\mathrm{d}\bar{E} \frac{\mathrm{Im}G_{AB}^{ \begin{matrix} \mathrm{ret}\\ \mathrm{adv} \end{matrix}}(\bar{E})}{E - \bar{E}} \end{align*} \begin{align*} \mathrm{Im} G_{AB}^{ \begin{matrix} \mathrm{ret}\\ \mathrm{adv} \end{matrix} } (E) = \pm \frac{1}{\pi}\mathcal{P} \int_{-\infty}^{+\infty}\mathrm{d}\bar{E} \frac{\mathrm{Re}G_{AB}^{ \begin{matrix} \mathrm{ret}\\ \mathrm{adv} \end{matrix}}(\bar{E})}{E - \bar{E}} \end{align*}

  • K-K关系说明,格林函数的实部和虚部是不独立的,只要求其实部或者虚部,就可求得格林函数的全部信息。