格林函数方法求解微分方程

方法介绍

\(y(x)\) 在区间 \(x\in [a, b]\) 内满足微分方程

\begin{align} \mathcal{L} y \equiv \frac{\mathrm{d}}{\mathrm{d}x} \left( p(x) \frac{\mathrm{d}y}{\mathrm{d}x}\right) + q(x) y = f(x) \end{align}

边界条件为

\begin{align} \left\{ \begin{array}{c} y(a) = 0 \\ y(b) = 0 \end{array} \right. \end{align}

如果边界值不为零, 如 \(y(a) = c_1, y(b) = c_2\), 可以很容易地构造一个边界 值为零的函数 \(u = y - \frac{c_1(b - x) + c_2 (x - a)}{b - a}\) .

它的解可以由对格林函数的积分求得

\begin{align} y(x) = \int_a^b G(x, t) f(t) \mathrm{d}t \end{align}

格林函数满足

\begin{align} \mathcal{L} G(x, t) = \delta(x - t) \end{align}

格林函数可以按照如下方式构造

\begin{align} G(x, t) = \left\{ \begin{array}{cc} A y_1(x) y_2(t),& x < t\\ A y_2(x) y_1(t),& x > t \end{array} \right. \end{align}

其中 \(y_1, y_2\) 满足 homogeneous 方程 \(\mathcal{L}y = 0\) . 并且分别满足边界条件 \(y_1(a) = 0, y_2(b) = 0\) . \(A\) 的值为

\begin{align} A = \frac{1}{p(t) \left[ y_2'(t) y_1(t) - y_1'(t) y_2(t) \right]} \end{align}

可用格林函数方法求解微分方程

\begin{align} - y'' = f(x) ,\quad \quad \quad y(0) = y(1) = 0 \end{align}

在这里, \(p(x) = -1\) , 两个满足边界条件的齐次解取为 \(y_1 = x, y_2 = x - 1\) , 所以可 以求得 \(A = \frac{1}{-1\left[1 \cdot t - 1 \cdot (t - 1) \right]} = -1\) 所以格林函数为

\begin{align} G(x, t) = \left\{ \begin{array}{cc} - x (t - 1),& x < t\\ - t (x - 1) ,& x > t \end{array} \right. \end{align}

那么方程的解为

\begin{align} y(x) = \int_0^1 G(x, t) f(t) \mathrm{d}t = (1 - x)\int_0^x t f(t) \mathrm{d}t + x\int_x^1 (1-t) f(t) \mathrm{d}t \end{align}

如果取 \(f(x) = \sin (\pi x)\) , 那么可以算得

\begin{align} y(x) = \frac{1}{\pi ^2} \sin (\pi x) \end{align}

如果取 \(f(x) = \cos (\pi x)\) , 那么可以算得

\begin{align} y(x) = \frac{1}{\pi ^2} \left[2x + \cos (\pi x) - 1 \right] \end{align}

Summary

格林函数方法将求解微分方程, 转换成计算定积分. 即使没有解析解, 也可以形式上写成一 个积分.

更加复杂的情况以后用到再整理.

Reference

  • Arfken, Weber, Harris, Mathematical Methods for Physicists 7ed: